Umi Network: The First Unified Multi-VM
Infrastructure Blockchain for Secure and
Scalable Move

Umi Network

https://uminetwork.com

Abstract

The Move programming language is widely regarded for its se-
cure, resource-oriented design — offering a powerful foundation for
the next generation of smart contracts. Yet, Move-based blockchains
have struggled to scale beyond niche adoption, often siloed from the
broader liquidity, tooling, and user base of mainstream ecosystems.

Umi Network introduces a new class of blockchain infrastructure:
a Unified Multi-VM Infrastructure (UMI) that allows multiple vir-
tual machines — starting with Move and EVM — to run natively,
side-by-side, in a single execution environment. This unprecedented
architecture enables true cross-VM composability, letting developers
build applications that seamlessly integrate logic and assets across VM
boundaries.

Umi is not simply a Layer-2, a sidechain, or a fork. It is a network
extension architecture — a new execution layer designed to unify the
best of multiple blockchain ecosystems while remaining sovereign, se-
cure, and highly performant. Built with the modular OP Stack, Umi
leverages Ethereum’s mature infrastructure, liquidity, and developer
tooling — while providing a modern programming and user experience
with Move.

For the first time, both Move-based and EVM-based applications
can deploy natively within a single, composable runtime a without sac-
rificing performance, security, or developer experience. Umi expands
what’s possible on Ethereum — while simultaneously redefining what’s
possible in blockchain execution itself.

1 Introduction

The inception of Bitcoin in 2008 [? | ushered in a new era of decentral-
ized and trustless computation facilitated by blockchain technology. While
Bitcoin’s core purpose was enabling peer-to-peer digital cash, it laid the foun-
dational primitives for a more generalized blockchain framework. Ethereum
[7], introduced in 2015, built upon these primitives by incorporating a
Turing-complete virtual machine, paving the way for executable smart con-
tracts and decentralized applications (dapps). The Ethereum Virtual Ma-
chine (EVM) is a stack-based VM with a Turing complete instruction set
that enables the deployment and execution of user-defined bytecode pro-
grams on the Ethereum blockchain. This revolutionary model of distributed
computation rapidly catalyzed innovation, giving rise to decentralized finance
(DeF1i), non-fungible tokens (NFTs), decentralized autonomous organizations
(DAOs), among other blockchain-native applications and use cases.

Solidity vs Move. While Solidity became the de facto language for
Ethereum smart contract development, it suffers from inherent security risks
stemming from semantic ambiguities, lack of formalism, and code complexity
[7]. These vulnerabilities have led to numerous high-profile exploits result-
ing in substantial financial losses, most notably the infamous 2016 DAO
attack [?] which drained around $60 million in ether at the time, as well
as the more recent $190 million Nomad bridge hack [? | in 2022. The
Move language [?], originally designed at Meta (Facebook) for the Diem
blockchain, emerged as a safer and more robust alternative to Solidity. Move
employs a bytecode interpretation execution model and follows a strict design
philosophy focused on simplicity, auditability, and prevention of unintended
behaviors. With influences from linear logic and secure coding principles,
Move mitigates many of Solidity’s pitfalls by preventing re-entrancy, data
races, and other common vulnerabilities through its design that allows only
a single execution context to access resources at any given time. Despite its
security advantages, the Move ecosystem has faced challenges with limited
liquidity, hindering widespread adoption compared to the more established
Ethereum/Solidity landscape.

Umi Network Solution. To unlock Move’s full potential while inherit-
ing Ethereum’s unparalleled liquidity and network effects, we introduce Umi
- a novel optimistic rollup architecture built on the Optimism OP Stack [?

|. Umi replaces the traditional EVM execution layer with a Move execution
layer, enabling seamless execution of Move smart contracts. The OP Stack’s
modular architecture allows us to leverage its sequencer, batcher, and pro-
poser modules, while integrating our custom Move execution layer. As part of
the execution process, we store contract data in a manner consistent with tra-
ditional Move blockchains, ensuring compatibility and ease of use for Move
developers. To further improve transaction finality, we will be adding ZK
proof computation on top of the optimistic rollup, leveraging the benefits of
both technologies. By combining the scalability and usability of optimistic
rollup with the security and finality of ZK proofs, Umi achieves a unique
balance of performance and security, enabling fast and secure execution of
Move smart contracts.

Central to Umi is a modular rollup design that prioritizes scalability,
parallelization, and flexibility. We employ parallel execution techniques to
maximize throughput, with the ability to run multiple Move virtual execution
sessions concurrently. Our architecture remains flexible, enabling integration
of the most efficient and available ZK tooling to provide fast finality. This
agile approach ensures Umi can adapt to emerging innovations, consistently
delivering a high-throughput layer 2 scaling solution as the ecosystem evolves.

Outline. Rest of the paper is organized as follows. In Section 77 we give
an overview of the Umi’s modular rollup solution; in ?? we describe in detail
how the ZK proof computation is designed; in Section 77 we discuss EVM
compatibility and the benefits of seamless interaction with the Ethereum
ecosystem; then lastly in Section 7?7 we describe the SDK for developer ex-
perience and detail the gas computation on the native ETH token.

2 Umi Rollup

The Umi rollup is composed of several modular components, each serving a
specialized role in the optimistic rollup architecture as shown in Figure ?7?.

e Sequencer: The sequencer is responsible for ordering and batching
incoming transactions, ensuring a consistent and tamper-proof trans-
action log.

e Move Execution Layer: The Move execution layer is a customized
component that enables seamless execution of Move smart contracts.

This layer interacts with the sequencer to execute transactions and
store the resulting changes in the database.

e Batcher: The batcher aggregates transactions into batches, which are
then processed by the Move execution layer.

e Proposer: The proposer is responsible for proposing new states to the
Ethereum mainnet, ensuring that the Umi rollup remains in sync with
the Ethereum blockchain.

The Optimism OP Stack, which underlies the Umi rollup, uses a combina-
tion of on-chain and off-chain components to achieve scalability and security.
On-chain, the OP Stack uses Bedrock contracts to store the ordered sequence
of transactions, while off-chain, the sequencer and batcher work together to
execute transactions and produce new state roots. The Bedrock contracts
serve as the source of truth for the rollup’s state, allowing the OP Stack to
ensure that the Umi rollup remains in sync with the Ethereum mainnet.

When a new batch of transactions is processed, the OP Stack generates
a new state root, which is then proposed to the Ethereum mainnet via the
proposer. If the proposal is accepted, the new state root is written to the
Bedrock contracts, effectively updating the rollup’s state. This process al-
lows the Umi rollup to achieve high throughput and low latency, while still
maintaining the security guarantees of the Ethereum mainnet.

The Umi rollup architecture is designed to be modular, allowing for con-
tinuous improvement and optimization of individual components. By lever-
aging the Optimism OP Stack’s modular architecture, we can seamlessly
swap out and upgrade components without disrupting the overall system.
This modularity enables us to support the Move VM by simply replacing the
execution layer, rather than building an entirely new rollup.

To ensure the integrity of the rollup, we will utilize validity proofs using
ZK Move implementation. This will enable fast and secure execution of Move
smart contracts, while maintaining the security guarantees of the Ethereum
mainnet. Additionally, a dedicated Bridge Contract enables seamless liquid-
ity flows between the Umi rollup and the Ethereum mainnet. This bridge
facilitates transfers of native ETH as well as ERC-20 standard tokens, al-
lowing users to deposit assets from Ethereum into the Umi Network and
withdraw them from Umi back to the Ethereum mainnet.

Cl Clients Q
l ZK Provers
Sequencer ;[E':]; ;[E'}
[oxni Tisr 2 ia] -] “_’(' OP Move)4—»

——
(OP Batcher) (OP Proposer)

Bridge
[Ethereum @ Cog?ract]

Figure 1: High-level architecture of the Umi optimistic rollup, depicting
the interaction between user applications, the sequencer, Move execution
layer, batcher, proposer, and the Ethereum L1 verifier contract, with seamless
liquidity flows enabled by the bridge contract.

3 Zero Knowledge Proofs

To ensure the integrity of the Umi rollup, we utilize Zero Knowledge (ZK)
proofs to validate the correctness of off-chain computations for each individ-
ual transaction. The ZK proof is generated using the ZK Move implementa-
tion, which provides a secure and efficient way to prove the validity of Move
smart contract executions. The ZK validity proof is then sent to Ethereum
along with the proposed state update, allowing for fast and secure finaliza-
tion of transactions. By leveraging ZK proofs, we can achieve fast and secure
execution of Move smart contracts, while maintaining the security guarantees
of the Ethereum mainnet. This approach enables transactions to be finalized
in a matter of minutes, rather than waiting for a week-long dispute period
as with traditional optimistic rollup architectures.

The use of ZK proofs in conjunction with optimistic rollup enables us to
achieve a unique balance of scalability, security, and usability. By generat-
ing ZK proofs for each individual transaction, we can ensure that the Umi

rollup remains secure and trustworthy, while also enabling fast and efficient
execution of Move smart contracts.

3.1 ZK VM

One approach to implementing ZK proofs for Move smart contracts is to
utilize a generalized ZK VM like Risc 0 [? |. This approach involves compiling
the Move VM to the RISC-V instruction set architecture (ISA) and executing
it within the zkVM. The zkVM generates cryptographic constraints that
model the computational steps, which are then used to produce a succinct
ZK-Proof. While this approach is viable, it may have performance limitations
due to the overhead of the zkVM. However, it can still be useful in a hybrid
model where ZK computation is only run on demand, allowing for faster
finality for urgent transactions while maintaining the week-long finality for
others.

Data Availability Host Guest (ZK Env)
Sparse Merkle Tree
e { State from DA } +—r Move VM
',Cl » State Writeset
{ Transaction from Seq } 7K Proof

(a) Step 1: Guest executions receive state and transaction data to run Move VM,
producing state writeset and ZK-Proof outputs.

Data Availability Host Guest (ZK Env)
Sparse Merkle Tree . - - New Root
‘ writeset.i proof.i —>) +—
writeset.i+1 proof.i+1 Recursive Proof ,
writeset.i+2 proof.i+2
IV Y Writesets
oo -t 00 d @

(b) Step 2: All the state writesets update Merkle tree and proofs are aggregated
recursively.

Figure 2: Workflow of Risc Zero executing a Move smart contract to compute
a new Merkle root representing the updated state.

The Zero Knowledge execution process within Risc Zero involves the in-
teraction between a non-ZK Host environment and a ZK-friendly Guest en-

6

vironment, as depicted in Figure ??. The Host retrieves all necessary state
details from a Sparse Merkle Tree [? | representation and transmits them to
the Guest. The goal of the ZK execution is to perform the state transition by
taking as input the current state root together with a batch of transactions,
and producing as output the new state root after the transactions in that
batch have been executed. The ZK execution proceeds in two steps.

First, all transactions (deployment of new Move contracts, or executions
on existing ones) in the batch are executed in parallel on separate Guests.
Within each Guest, the Move smart contract is executed by running the
Move virtual machine inside a ZK computation model. The output from
each of these executions is a changeset containing the state changes to be
applied across different account resources. Once the ZK computation finishes
processing we will have a proof of the execution for the transaction.

This proof also includes applying all the changes to the state from the
individual changes sets and computing the updated Merkle root. This up-
dated root, along with the ZK proof that is was correctly produced, is the
output of the ZK execution.

3.2 ZK Assembly

While the initial Umi architecture relies on Risc Zero’s general zkVM, we
plan to implement Move-optimized ZK execution in a future phase.

Move Bytecode Level ZK Execution. An alternative approach to
implementing ZK proofs for Move smart contracts is to utilize a ZK Assembly
language like Miden [? |.

This approach involves mapping each Move bytecode to a corresponding
Miden assembly instruction, allowing for ZK computation to be performed
directly on the smart contract bytecodes. By executing the bytecodes at a
lower level, this approach eliminates the overhead of running the entire Move
VM, resulting in improved performance and efficiency. The Miden assembly
language is well-suited for this purpose, as it is similar to a programming
language assembly and can be easily mapped to the Move bytecode.

Achieving bytecode-level ZK execution requires a specialized compiler
toolchain that can analyze and translate individual Move bytecode instruc-
tions into an optimized ZK assembly representation. Umi’s compiler parses
through each Move bytecode operation, methodically converting it into equiv-
alent ZK assembly code tailored for the Miden virtual machine. This conver-

::Add => ::Instruction(::Add),

::Sub => ::Instruction(::Sub),
::Mul => ::Instruction(::Mul),
::Div => ::Instruction(::U32Div),

Figure 3: Illustration of a straightforward mapping from Move bytecode
instructions to the equivalent Miden ZK assembly representations.

sion process involves a mix of direct bytecode mappings for straightforward
instructions (as illustrated in Figure ??7) as well as complex mappings for
those that require more intricate ZK constraint modeling (as the conversion
steps shown in Figure 77).

Once the entire Move bytecode has been transformed into the ZK as-
sembly representation, the resulting code essentially becomes the ZK smart
contract deployed within the Miden execution environment. When users ini-
tiate transactions, the corresponding ZK assembly instructions are loaded
and executed within the ZK virtual machine’s constrained CPU. This ZK
execution model generates succinct proofs at the granular bytecode opera-
tion level, attesting to the correct computational steps. Additionally, Umi’s
compiler performs further optimizations on the final ZK assembly, enhanc-
ing execution efficiency by minimizing redundant constraints and leveraging
batch processing where applicable.

4 EVM Compatibility

Umi provides seamless compatibility with the Ethereum ecosystem through
a novel Move smart contract-based approach. The EVM Emulator contract
accurately replicates the behavior of the EVM, enabling the deployment and
execution of Solidity contracts on the Move VM. By executing EVM bytecode
exactly as expected and calculating gas costs based on EVM specifications,
the EVM Emulator ensures that Solidity contracts run correctly and produce
the same results as they would on the Ethereum mainnet.

The EVM Emulator has been thoroughly tested and is able to run
Ethereum tests as expected, demonstrating its compatibility and correct-
ness. This means that developers can confidently deploy their existing
Solidity contracts on the Umi network without modification, taking
advantage of the scalability and security of the Umi platform.

8

fun collatz(n: u32): u32 { vec! [

let count: u32 = 0; Bytecode: :LdU32(0),
while (n != 1) { Bytecode: :StLoc(1),
if (m% 2==0) { Bytecode: :CopyLoc(0), (2)
n=mn/2; Bytecode: :LdU32(1),
} else { Bytecode: :Neq,
n=3x*mn+ 1; Bytecode: :BrFalse(29), (5)
s
count = count + 1; Bytecode: :Branch(2), (28)
I¥ Bytecode: :MoveLoc (1), (29)
count Bytecode: :Ret,
}]
(a) Collatz conjecture sequence cal- (b) Generated Move bytecodes with
culation in Move line numbers in parantheses

proc.collatz

while.true
// if-else logic
end

// Ln 29: Save in memory, exit
mem_store.COLLATZ_INDEX

end
Branch
back to 2
(¢c) Corresponding Control Flow (d) Generated Miden assembly dis-
Graph between lines playing only the branching sections

Figure 4: Move source code (a) is compiled to bytecode with branches (b),
which constructs a Control Flow Graph (c) representing state transitions,
guiding the heuristic generation of optimized Miden assembly (d).

By providing EVM compatibility, Umi aims to bridge the gap between
the Ethereum and Move ecosystems, enabling developers to leverage the best
of both worlds.

5 Umi SDK and Gas

Umi Network will provide an SDK in multiple programming languages to
facilitate developers interacting with our system. In our system architecture,
we prioritize seamless integration with widely adopted Ethereum wallets,
facilitating smooth transaction signing and transmission to the Sequencer.
To achieve this, we ensure compatibility with Ethereum RPC endpoints, en-
abling robust support for these wallets. It will also query the data availability
layer to get details on accounts. All of this is done by connecting to the Umi
Network’s Ethereum-standard RPC endpoints.

An important aspect of the Umi SDK is accurately computing the gas
costs associated with executing transactions on the rollup network. There
are two primary fee components - the cost of data availability storage and the
cost of settling state proofs on Ethereum Layer 1. Gas fees are denominated
and paid in ETH tokens.

When initiating a transaction, developers can leverage the estimateGas
API which provides an estimate of the gas contribution from their transaction
to the overall batch size. The base fee is the minimum price per transaction,
primarily accounting for storage costs on Layer 1 and the data availability
layer. Notably, the Ethereum Dencun update [? | significantly reduces the
costs associated with temporary storage, which is particularly relevant for
layer-2 solutions like Umi. With this update, Ethereum charges substantially
less for temporary storage, making it more economical for layer-2 solutions to
store data on the Ethereum mainnet. As a result, the base fee for transactions
on the Umi network is expected to be very low, making it even more attractive
for developers and users to leverage the scalability and security of the Umi
platform.

Separately, the execution gas is a dynamic fee calculated by the Umi com-
piler based on the complexity of the Move bytecode execution. This portion
is paid to the Sequencer and Provers to compensate for the computational
resources consumed in processing transactions and maintaining operational
overheads. Through this multi-component gas model, Umi ensures an equi-
table distribution of fees across different layers of the rollup architecture.

10

6 Conclusion

The Umi Network represents a significant step forward in the evolution of
blockchain technology, offering a scalable, secure, and EVM compatible plat-
form for decentralized applications. By leveraging the Optimism OP Stack
and Move virtual machine, Umi enables developers to build high-performance
applications that inherit the security guarantees of the Ethereum mainnet.

The use of Zero-Knowledge proofs and a modular architecture ensures
that the Umi network remains secure, scalable, and adaptable to the needs
of its users. With its unique combination of scalability, security, and EVM
compatibility, the Umi network is poised to unlock new possibilities for de-
centralized applications and bring the benefits of blockchain technology to a
wider audience.

11

